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Cincinnati, Ohio 45221
STAMATIS CAMBANIS
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ABSTRACT

Via the tensor product structure of the
nonlinear space we are able to solve the gen-
eral estimation problem of nonlinear func-
tionals of Gaussian processes in the sense
that we can reduce the nonlinear prcblem to a
standard linear estimation problem, the theory
of which has been well developed. Also we in-
troduce the concept of super predictor for a
class of prediction problems and derive a
lower bound for the mean square errcr of the
nonlinear predicticn.

1. BACKGROUND

ILet X = (X, t € T) be a zero mean
Gaussian process defined on a probability
space (Q,B,P). B is usually taken to be B(X),
the o-field generated by the process X.

There are two important Hilbert spaces asso-
ciated with the (Gaussian) process X. The
nonlinear space of X, LZ(X) = L2(Q,B(X),P).

consists of all B({X)-measurable random vari=-
ables with finite second moment which are

called (nonlinear) Lz-functional of X. The

linear space of X,H(X), is the closed sub-
space of Lz(x) spanned by Xt, t € T, and its
elements are called linear Lz-functionals of
X.: If S is a subset of T, then the nonlinear
space and linear space of the Gaussian pro-
cess (Xt, t € S) are denoted by LZ(X;S) and

H(X;S) respectively. Note that Lz(x;s) is a
closed subspace of Lz(x) and H(X;S) a closed

subspace of H(X).

Suppose £ eH(X) and E 2= t. Then £ is a
Gaussian variable with mean zero and variance
t. Applying the Gram-Schmidt procedure to
orthogonalize the sequence of random variables
1,£,£2,63,... in Lz(x), we obtain the ortho-
gonal sequence H (E), H (E), H (E):--.

'
p t(E) is called the Hermxte polynomlal of
degree p with parameter t, and is a poly-
nomial in both variables t and §. The first
few Hermite polynomials are

= = = 2—
HO’;(E) 1 Hllt(E) 3 Hz,t(i) g°-t

= §3 -
(8) = &3 - 3¢ .

The Hermite polynomials staisfy the following
properties

Approved for vul llo molongag

*vaﬂi?diﬁﬁ“iﬁiaﬁi‘illh.O*’ o s

() £ H, (OB (€)= P cpqcp

p.t
(2) exp (uE-~u} I w2 &,
p>0 P,t p!
YVue R
(3) H (cE;)—opH (€) , o >o0.
p.t _2

When t =1, Hp t(E) will be written as
’

H (£).

b £

For each p = 1,2,... , let an

H(X) ®...@ H(X) and respectively

(X) =

#P (x) = Hy(X) ©... ® H(X) be the pth power
tensor and symmetric tensor products of H(X);

for p = 0, let Hﬁp(x) = an(x) be the space of

all constant random variables in H(X). Hep(x)
is a Hilbert space and its inner produce is
such that
(4) 510---95 e n 0---" >
1P fPx)
=< Elvnl>H(x) eee< E ¢ N >H(x)
for all £'s and n's in H(X). H‘p(x) is a

closed subspace of H“p(x) spanned by all
elements of the form

- -~ 1
(5) Ele-.-ﬂ E = — Z £ @ -8 E
p p! s m “p
where m = (ﬂl,o--, ﬂp) runs through all permu-

tations of (1,°**,P) and £'s are elements of
H(X). For further properties of tensor and
symmetric tensor product spaces see for ex-
ample [6] and [7].

Our analyses are based on the following
tensor product structure of the nonlinear
space of a Gaussian process (see [6] and [7]).

THEOREM 1. [Let X be a zero mean Gaussian
process. Then there exists a wnique tsomorph-

4sm @ from goum’(x) onto L (X) suwch that
Sy = 2
61 o (% ) mq EHES

where e <7 ®n% g e e nm.
p20

IF ) E € H(X) are orthogonal then

@ e € Pra.bE 'Pk) ®1 ” (€D
& 5 1

L (Ek
where p = p +o..4p . IF (E , Y € TH(T linearly

ordered) is a complete orthanormul set (CONS)
in H(X) then the family

(8) (—ﬁ—,—);’ o(c”’m B g ”k
, M " Yx
el
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= (py!)-% H H (&),
L6
P20, k21, p +..tp

) = PrYl<---< Yk '
i8 a CONS in Ly (X).

Yx

2. NONLINEAR ESTIMATION

Let X = (xt, t € T) be a second order

process with zero mean. Consider the fol-
lowing estimation problem: We observe Xt

for t € S, a subset of T, and we want to
estimate an L2-functional 8 of X based on

the observations. We are interested in find-
ing the best estimate € , an Lz—functional

of (Xt, t € S) which minimizes the mean
square error of estimation E (8-8)2. It is

well known that 8§ can be obtained as the con-
ditional expectation of 8 given xt' € € Si

namely P
6=E@©]x,tes).

-In general, 8 is extremely difficult to
determine. However, if X is a Gaussian
process we have a complete solution.

let X be a zero mean Gaussian process
and {£_,y e T} (T linearly ordered) a
cons if H(X). Then, according to Theorem 1,
every Lz-functional of X has the following

orthogonal development

Pyes<P
1 k

6= ] ) a
P20 py+...+p, =P ¥~

¥y<eery
HPY (Eyy)-..

1 L% €y, )

Yk

THEOREM 2. Let X be a zero mean Gaussian
process and let 8 € L, (X) have the ortho-
gonal development (9 3. Then

% Ryeesky
8 = &
5 )
p>0 p1+...+pk=p 1 k
L e,
2 (€
Lt
1 2

22 (E_)
P E EYk Y

H -~
pl,feY

where

(ff({ylxt, t € S) = Proj £

H(X;S) "y .
PMM:WmiamHﬁmLJMwuh

op

® H “(X) by virtue of Theorem 1, we have
p20
5 E 2 X
8 = (elxt, t e S) ProJLz(X;S) 8
N
= a_ ... Proj
11 Y Lix,s)
®p; = = 9§
(5791 5...8 £k )
1 Yk
Thus to show the theogem it suffices to show
epl 8
(10) Proj. ..o (€, 6...8 € kK ) =
E Lz(XlS) ~Yl Y
. %P . . .8y
£ ®...8
Y1 Y -

For each p € Lz(x;s) write
ql...qj

LI Y | b
q>0 q1+...+qj=q 51"'63‘
61<...<6j

&, €q.

n, &..8 n 3

[ S,

1 j

where {"6’5 € A} (A 1linearly ordered) is
a CONS in H(X;S)._We have

o, . _ @
< g 4 ©...8 £ k, p>
L6 Yk 5 3
Qe ep,
0 e S R T
1 3 Y1 Y
n60q1 8...8 n?qj >
JEE i
_ sl oWy . . e
o G & L B £ ls...8 & ™
61...6j 1 k
&, _  _ é&q.
n le..e g’ »
L Y 5
aet V. . W
& ;Yl 1 ®...8 § k,p >
Tx

where the second equality is a consequence
of properties (1), (3) and <EY, > =

<EY ’ n6> .

Since p ¢ Lz(x:s) is arbitraty and

S ®L . % o 1 (x:S), @0) follows.
3 e ®© ¢ 2

2.0 S Yk

This completes the proof.
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COROLLARY 3. If X i a zero mean Gaussian
process and § € H(X), then .
(1), e (8) | % it e s) = Hogg” ),

piEE
(12) E(expl(e-'£€ } | X, t € 5) =

exp {£-% EE2).
If X s a zero mean Gaussian rartingale then

- -
Y 2(xt) and Z, = exp {xt s Ext } are

t = Mo Ex{
martingales.

(The last statement is well known for X a
Weiner process and p = 2.)

PROOF. (11) and (12) follows from proper-
ties (2 ), (3 ) and Theorem 2. The last
assertion is an immediate consequence of (11)
and (12).

If X is a zero mean Gaussian process and
T= (- ,» ) (or any interval) then by the
corollary we have that for all s < t

(13) E (Hp,Ex 2(x) | X, n 58} =
t

H = (X
p'EXt?s( t,s)
where
= <
X, o = E(x, | X0 uss)
An expression for X can always be obtained

via the Cramer - Hi&isrepresentation of X:

N t
(n) (n)
x, =) [ £ (tu dz
n=1 -

Then we have

N S
b oy £ e aa™.

X =
s
t, el u

The case with p = 2, i.e. the Lz-functional
xt2 - E xtz, is considered in [2] for a very

special class of Gaussian processes X. It
should be clear that whenever a sirple expres-
sion is available for xt s’ then (13) gives

’

a simple expression for the nonlinear predictor

of the Lz-functxonal Hp,Ex 2 (Xt).

We close this section by solving a sim-
ple estimation problem. Let (xt, 0<t<T) be

a stationary reciprocal Gaussian process with
EX:O,EXt =1 , and continuous covariance func-

tion R(t,s) = R(t-s). It is known [5] that
R(t) must take one of the following forms:
e-at, a > 0; cos at, a > 0 and T< Tw/a;

l-at,0<ac<2/T. Let0<u<t<ve<rT
be given. We desire to estimate 8, an L2~
functional of xt, based on

x', s €S = [0,ul\ [v,T]. By reciprocality
we have

X, = Ewx, | x,ses) = aX + BX ;

and an easy computation shows that

- R(u-t)-KR(v-t)R(u-v) _Rlv-t)-R(u-t) ¥ (u-v)

’ B
l-R2 (u-v) 1~R2(u-v)

Since 6 is an Lz-functional of xt, it has
the orthogonal development 6 =

Z a H a (i ). Thus by Theorem 2 the
gao ¥ W Ex2"t

best estimate of 6 is given by

pgoapﬂp.02+82+2uea(u—v) R, & Sl
3. NONLINEAR PREDICTION

Consider the following prediction pro-
blem for a class of processes: Let X =
(xt, t € T), T an interval, be a second order

process and let Yt = et(xt) with et a real
function such that EYt = 0 and EYt2<~ for all

t € T. Suppose on the basis of the (past)
values of Y = (Yg, s < t) up to time t we

want to find the best prediction of the future
value of Yt+r for fixed T > O.

Two predictors are of special interest:
the optimal linear predictor Yl(t,r) and

the optimal nonlinear predictor ?ne(t,T). The

optimality is in the sense of minimizing the
mean square error within the class of all linear
and nonlinear predictors respectively. It is
well known that

Yz(t,r) = Projﬂ(ys

i s <t) Yt+r

;‘nlt"’ - Er,lY.,sc0.

t+T
The corresponding mean square prediction errors
are denoted by

2 = - 2
% (tyx) = E (Yt’t Yt(t,t)) i

2 = 2
9 (t,1) = E(Yt+t- Ynt(t,r)) .

Now introduce a super predictor ?s(t,t)
to be the nonlinear prediction of Yt+T baseé

on X., s < t, i.e.

¥ (k1) = | X0 s <t);

(Yt+t
its mean square prediction error is denoted by
osz(t,T). It is clear that

aa)e (e, 0¢ oZgt,0) < (6,0)




r'l

and thus oz provides a lower bound for the mean

square errors of linear and nonlinear predic-~
tors. If X is a Gaussian process, os(t,1) can

be obtained by solving an estimation problem as
discussed in Section 2. If, in addition, 0t

happens to be a 1-1 function for each t then
the o-fields generated by xt and Yt coincide.

In this case an(t,f) = Qs(t,t) and the ncn-

linear predictor can be obtained by solving an
estimation problem again.

We now turn to the important special case
where X = (Xt.~° < t < @) is a zero mean sta-

tionary Gaussian process with covariance func-
tion R(t,s) = R(t-s) and et = 6 for all t. 1In

this case we can calculate oz(t,t) = cz(t) as
follows. Write
(19 Y =6(x)= ] aH _(x)

t t o1 » p'dz t
where o = Exz. Clearly Y is a stationary pro-
cess with EY, = 0 and EY: =} p;agozp < =,
Since for §,n € H(X)

€p €

EH 2(e)ﬂ 2(n) = pli<g p.n 2>
P'EE P'En

= pI<g, n’p:

and if p # q
EH (E)H (n) =0,
pE2 qEn’
it follows
< = 2 s
ae) Exy, - Zp!apk"(: s).

And (6) implies that if X is mean square con-
tinuous so is Y.
X <
Let X(t,T) = E(xt" | s <t)

be the optimal nonlinear predictor of Kere
(which is also the optimal linear predictor
since X is Gaussian), and ao(r) be the mean
square prediction error. Then by Corollary 3

a7y ¥ (k1) = Jan (X(t, 1))

_ 1 P P EX(t, 1)
- and hence I

. 2 s 2
(18) os(t) - E‘Yt+t - Ys(t,T))

2 32
= Evt+t - EY_(t, )

2

= J pla o2P. I ptal(o -og(f))P

2

1 P P

- ] plaztazp-(az—ag(t))pl-
p2l

B el St S L e

It is well known from the _general theory of 1
stationary process that 00(1) can be obtained

analytically (if not explicitly) through the
Wiener-Paley factorization theorem if X is regu-
lar (i.e. H(X_, s < t) = {0b. It can be

shown that if X is regular so is Y, and there-
fore oi(r) can also be obtained analytically.

Jaglom [4] has considered the problem of
comparing the performance of optimal linear and i
nonlinear predictors for polynomial functions of
certain stationary Markov processes. Donelson
and Maltz [1] studied this problem in detail for
polynomial functions of the Ornstein-Uhlenbeck
process. The inequality (14) plays a central
role in such studies.

As an example consider X the Ornstein-Uhlen-
beck process and Y a nonlinear function of X
given by (15). Recall that the Ornstein-Uhlen-
beck process is a Gaussian process with zero

: ~-|t-s
mean and covariance R(t-s) = e ® . By the

Markov property we have
- ~e
x(e, 1) = E(x, | X s<t)h=e X.
Thus it follows from (17) and (18) that

Y (0= Jau
¥ P21 P Pre’ZI

« B

P>

-1
(e xt)

-pt
pe Hp(xt),
2pt

o:(t) = Z p!a2(1 e )

p21

This result, with Y a polynomial function of X,
has been obtained by Donelson and Maltz using
a different approach.

Finally, we remark that if Yt = Hp(xt) then

; .l « s ?
Ynl(t'T) Ys(t.r) e Y.,
2 -l - _ =2pt
anl(‘) 0‘(1) 1 -e =
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